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Abstract

Natural acoustic communication signals, such as speech, are typically high-dimensional with a wide range of co-varying spec-
tro-temporal features at multiple timescales. The synaptic and network mechanisms for encoding these complex signals are lar-
gely unknown. We are investigating these mechanisms in high-level sensory regions of the songbird auditory forebrain, where
single neurons show sparse, object-selective spiking responses to conspecific songs. Using whole-cell in vivo patch clamp tech-
niques in the caudal mesopallium and the caudal nidopallium of starlings, we examine song-driven subthreshold and spiking
activity. We find that both the subthreshold and the spiking activity are reliable (i.e. the same song drives a similar response
each time it is presented) and specific (i.e. responses to different songs are distinct). Surprisingly, however, the reliability and
specificity of the subthreshold response was uniformly high regardless of when the cell spiked, even for song stimuli that drove
no spikes. We conclude that despite a selective and sparse spiking response, high-level auditory cortical neurons are under
continuous, non-selective, stimulus-specific synaptic control. To investigate the role of local network inhibition in this synaptic
control, we then recorded extracellularly while pharmacologically blocking local GABAergic transmission. This manipulation mod-
ulated the strength and the reliability of stimulus-driven spiking, consistent with a role for local inhibition in regulating the reli-
ability of network activity and the stimulus specificity of the subthreshold response in single cells. We discuss these results in
the context of underlying computations that could generate sparse, stimulus-selective spiking responses, and models for hierar-
chical pooling.

Introduction

Stimulus encoding – the relationship between an external event and
the accompanying neural response – is the cornerstone of sensory
neurophysiology (Adrian, 1926). Yet, for the complex sensory sig-
nals that are essential to many natural behaviors, our understanding
of stimulus encoding is poor. In particular, we know very little
about the synaptic inputs evoked by natural signals, and the opera-
tions governing their integration and transformation into spiking
responses in single neurons.
Here we test specific predictions about the selectivity of stimu-

lus-specific synaptic drive underlying sparse, selective spiking in
the auditory cortex of European starlings, a species of songbird.
Songbirds, in particular starlings, are well suited for these studies.
Starling songs are acoustically complex and composed of very
diverse, brief segments (motifs) that are perceived as distinct audi-
tory objects (Gentner, 2008). Stimulus-driven spiking activity in the
higher-order cortical regions caudal mesopallium (CM) and caudo-
medial nidopallium (NCM) is sparse: only a small portion of all
possible motifs evoke robust spiking in single neurons (Gentner &

Margoliash, 2003; Meliza et al., 2010; Thompson et al., 2010;
Jeanne et al., 2011; Meliza & Margoliash, 2012) and each motif
evokes spiking from only a small number of neurons (Gentner &
Margoliash, 2003). Responses to song elements are dependent on
acoustic context (Jeanne et al., 2011; Kozlov & Gentner, 2014),
and (in zebra finches) combining song elements into longer bouts
increases the sparseness of spiking responses (Schneider & Wool-
ley, 2013).
Sparse spiking responses to natural signals appear to be a gen-

eral property of sensory cortex (Vinje & Gallant, 2000, 2002;
Olshausen & Field, 2004; Graham & Field, 2007b; Hromadka
et al., 2008; Sakata & Harris, 2009; Tolhurst et al., 2009). That
is, only a small proportion of all stimuli evoke spikes from any
given neuron (lifetime sparseness, which we refer to as selectiv-
ity), and only a small proportion of neurons spike at any point in
time (population sparseness). Sparse representations convey a
range of computational benefits to downstream neurons for the
classification and recognition of complex signals (Ganguli &
Sompolinsky, 2012; Babadi & Sompolinsky, 2014). Models for
object recognition and classification rely on feed-forward hierar-
chical pooling of the outputs from simpler feature detectors to
build sparse, selective spiking responses to increasingly complex
signals that carry behaviorally relevant information (Riesenhuber
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& Poggio, 1999). The synaptic and network mechanisms underly-
ing this pooling remain unclear.
We distinguish two potential synaptic pooling regimes: ‘sparse’

and ‘distributed’. Each regime makes different predictions about the
selectivity of the subthreshold response underlying selective spiking
in single neurons. In a sparse pooling regime, neurons with selective
spiking responses pool inputs that are necessarily less selective but
still biased towards the features in complex natural signals that ulti-
mately drive changes in spike rates. Sparse synaptic pooling predicts
that stimulus-specific subthreshold activity will be selective (i.e. dri-
ven only by a subset of the potential stimuli), and that the degree of
selectivity will vary only quantitatively from that of the spiking
response. Moreover, the timing of stimulus-specific subthreshold
responses should, on average, align with the stimulus-evoked
changes in spike rate. We contrast sparse pooling with distributed
pooling, in which neurons with selective spiking responses pool syn-
aptic inputs that are not biased towards the features in complex nat-
ural signals that drive changes in spike rates. Distributed pooling
predicts that the net stimulus-evoked synaptic input will be stimu-
lus-specific (i.e. unique for different stimuli), but non-selective (i.e.
driven by all stimuli). Because it is non-selective, the stimulus-spe-
cific subthreshold activity under distributed pooling will not neces-
sarily be tied to stimulus-evoked spike rate changes. So long as the
inputs are stimulus-specific, however, the cell could be made to
spike selectively (through a variety of mechanisms) to a potentially
wide range of relevant features.
The foregoing hypothetical pooling scenarios both predict that the

subthreshold membrane response of neurons whose stimulus-driven
spiking responses are selective will contain stimulus-specific activ-
ity. Only the sparse pooling hypothesis requires that the stimulus-
specific subthreshold activity is selective for subsets of stimuli. To
distinguish these two hypothetical pooling scenarios, we compare
properties of the subthreshold response to spiking. Direct measure-
ment of the subthreshold activity along with spiking was accom-
plished using whole-cell, in vivo recording techniques in NCM and
CM of starlings during presentation of natural conspecific vocaliza-
tions, i.e. songs. We characterized variability across time and across
trials for both subthreshold and spiking activity. In concert with the
observation of very selective (sparse) stimulus-driven spiking
responses, we find strong, remarkably persistent, stimulus specificity
in the subthreshold response to all songs regardless of spiking.
These results provide strong evidence against sparse synaptic pool-
ing and support instead a distributed synaptic pooling regime in
which, in sharp contrast to spiking output, net subthreshold
responses are stimulus-specific and non-selective.
In a distributed pooling regime, stimulus-specificity throughout

the subthreshold response depends on the trial-to-trial reliability of
the inputs. Inhibition is a widespread feature of cortical networks
(Wilent & Contreras, 2005; Ayaz & Chance, 2009; Isaacson &
Scanziani, 2011) and in Starling NCM, local inhibition modulates
the selectivity of spiking responses (Thompson et al., 2013). We test
whether inhibition is necessary for maintaining stimulus specificity
in the subthreshold response throughout stimulation. If inhibition
modulates the reliability (and by extension the specificity) of the
synaptic input to individual neurons then it would necessarily modu-
late the reliability of the network spiking response, and the subthres-
hold and spiking responses of individual neurons. We find that
transient local blockade of gamma-aminobutyric acid (GABA)
receptors decreases the reliability of stimulus-driven spiking
responses in NCM, consistent with a role of inhibition for support-
ing a non-selective, stimulus-specific distributed synaptic pooling
regime underlying selective spiking in NCM.

Methods

Animal preparation

Experiments used adult European starlings (Sturnus vulgaris), wild-
caught in southern California. We prepared the starlings for the
recording session by attaching a small pin stereotaxically to the sur-
face of the skull with dental cement (under isoflurane anesthesia).
For electrophysiological recordings, we anesthetized the starlings
with 20% urethane (7–8 mL/kg, in three to four intramuscular injec-
tions over ~2 h) prior to being placed in the recording chamber or
with a continuous infusion of 1.3% ketamine in 5% glucose saline
at 2 mL/kg/h throughout the recording. Starlings were placed in a
cloth jacket and secured via the attached pin to a stereotaxic appara-
tus inside a sound attenuation chamber. A small craniotomy was
made dorsal to the recording site (NCM: 0–300 rostral of Y sinus
and 500 lateral of midline; CM: 2500 caudal of Y sinus and 500–
1500 lateral of midline), the dura removed and electrodes advanced
into the brain.

Ethical standards

All procedures were conducted in accordance with approved IACUC
protocols and in accordance with the guidelines laid down by the
NIH in the US regarding the care and use of animals for experimen-
tal procedures.

Electrophysiology

Whole cell patch current clamp recordings (MultiClamp 700B
amplifier; Axon Instruments, Union City, CA, USA) of 5 to 60-min
duration were made using the blind patch technique (Margrie et al.,
2002). Whole-cell patch pipettes (3 to 6-MO tip resistance) were
fabricated from filament (0.25 mm) borosilicate glass (OD 2.0 mm,
ID 1.5 mm; Hilgenberg, Malsfeld, Germany). The standard K+-
based internal solution was: (in mM) potassium gluconate 135, NaCl
8, HEPES 10, Mg-ATP 4, Na-GTP 0.3, EGTA 0.3 (pH 7.4, 298
osm). Recordings were obtained by slowly advancing the electrode
through the region of interest (about 1500–2000 lm below the sur-
face) while monitoring its resistance with voltage steps. During the
initial descent through the hyperpallium, a large amount of positive
pressure (~300 mbar) was applied to keep the electrode tip free from
debris. After arriving at the depth of interest, the positive pressure
was reduced to 25–35 mbar, capacitance compensation was
adjusted, and the pipette was advanced in 2- to 3-lm steps until
direct contact with the cell membrane was detected as an increase in
resistance. Immediately upon contact, pressure was released and for-
mation of the giga-seal between the electrode tip and the cell mem-
brane occurred either spontaneously or after slight suction applied
by mouth. After the giga-seal stabilized (typically within a few min-
utes) suction was used to obtain whole cell access (access resis-
tances ranging from 5 to 90 MΩ; see ‘Intrinsic physiology’).

Extracellular recordings

To examine the role of local inhibition in controlling spiking reli-
ability in the network, we used data from extracellular recordings in
NCM collected as a part of previous experiments (Thompson et al.,
2013). Briefly, commercial multibarreled glass pipettes containing a
carbon fiber electrode (5 lm diameter; 400–1200 kΩ impedance)
and six attached barrels (~3 lm diameter) were used for drug
microiontophoresis (Kation Scientific, Minneapolis, MN, USA).
Gabazine (SR95531, 3 mM, pH 3.2; Sigma Aldrich, St Louis, MO,
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USA), or a gabazine/saclofen combination, was used to inhibit
GABA-mediated inhibition locally in NCM around the recording
site. The combined application of gabazine and saclofen (n = 12
sites) did not elicit responses different from those during application
of gabazine alone (Thompson et al., 2013). Following Thompson
et al. (2013) we considered drug delivery at a particular site to be
successful if the average song-driven firing rate during iontophoresis
was significantly different (either higher or lower) from the firing
rate prior to iontophoresis.

Auditory stimulation

All stimuli were extracted from previously recorded song repertoires
of adult European starlings. Single motifs (stereotyped multi-note
elements of natural Starling song) played two or three times in suc-
cession, or longer segments (5–10 s) of continuous song were
played to the anesthetized animal in an anechoic recording chamber.
Auditory stimuli were presented free field from a full-range speaker
mounted 30 cm from the center point of the subject’s head, where
the mean sound pressure level ranged from 40 to 80 dB SPL.

Data analysis

Electrical activity recorded in whole-cell configuration was low-pass
filtered (10 kHz), digitally sampled (44.1 kHz), and saved for offline
analysis (IGOR PRO2; WaveMetrics Software, Lake Oswego, OR,
USA). For further analysis, data were down-sampled to 10 kHz and
exported to a format used by custom-written MATLAB (Mathworks
Software) routines. Only stimulus–response pairs for which there
were at least five repeats were included in the analyses of the
whole-cell data.

Intrinsic physiology

We present data recorded in whole-cell configuration from 20 single
neurons in NCM and CM. As this is the first report using whole-cell
in vivo recordings in CM and NCM of the starling, we include here
a basic characterization of intrinsic properties for reference/compari-
son with other brain regions and species. To estimate the passive
input resistance (Rin) and time constant (T) of the membrane, we
applied a negative current pulse (�75 pA) through the recording
pipette and fit the voltage response with a double exponential func-
tion to isolate the electrode artifact from the membrane response. To
avoid contamination by slow, voltage-activated conductance in our
estimate of the passive membrane properties (Rin and T), we fit only
the first 100 ms of the voltage response. The median series resis-
tance (Rs) across all 20 neurons used in this study was 32 MΩ (CI:
5–64 MΩ), which allowed sufficient isolation of the membrane
response. The median Rin was 157 MΩ (CI: 56–309 MΩ) and the
median T was 14 ms (CI: 7 and 21 ms). Independence of estimates
for Rin and T from Rs was confirmed with a simple linear regression
model.
The negative current step also regularly induced slowly depolariz-

ing voltage sags. We estimated the time course and magnitude of
this effect by removing the passive components of the voltage
response (by subtracting the exponentials used to estimate Rin and
Rs), and then re-fitting the remaining voltage response with a single
exponential (Zhu et al., 1999). In all cases there was a significant
exponential fit with a median time constant of 184 ms (CI: 110–
364 ms) that was depolarizing in 19/20 cases (across which the
steady-state membrane voltages ranged from �96 to �64 mV). In a
subset of neurons recorded for another experiment, we measured the

dependence of the input resistance on the membrane potential and
found a positive correlation. This has not been well characterized,
but is consistent with hyperpolarization-induced activation of a con-
ductance.
In 14 of 20 neurons, the series resistance was sufficiently low

(< 50 MΩ) to analyse the temporal dynamics of spike shape. For
these neurons, the median width at half-height was 1.0 ms (CI: 0.5–
1.7 ms) and the median spike threshold was 25 mV above the rest-
ing membrane potential (CI: 19–30 mV). Rs did not correlate with
spike height.
We measured a limited number of properties but the data did not

suggest any clear distinction into cell types. The reported analyses
therefore pool across all recorded cells in two brain regions. Sam-
pling biases inherent in whole-cell patch techniques (relating to fac-
tors such as soma size, morphology and myelination) are probably
present in our dataset; other cell types not recorded could, of course,
show very different responses. Notwithstanding such issues, the con-
sistency of our main results of the study across a potentially diverse
set of cell types highlights the robustness of the effects.

Signal filtering

To detect spike times from intracellular records, the signal was
high-pass filtered at 200 Hz and thresholded. For extracellularly
recorded data using carbon-fiber electrodes, spike times were
detected as reported by Thompson et al. (2013). Measures of sub-
threshold activity were made after the voltage record was smoothed
using a one-dimensional, 18-ms median filter to suppress noise and
clip spikes near threshold.

Response epoch detection

One important component of our experiment is the use of natural
stimuli. As such, we did not want to arbitrarily tailor the duration of
our stimulus to a duration that was experimentally convenient to
analyse a ‘response’, as is common when using artificial stimuli.
Instead, under the assumption that the activity across the entire dura-
tion of a complex stimulus does not necessarily constitute a mean-
ingful response, we presented long bouts of song within which we
defined multiple shorter responses. To do this, we separately parsed
the ongoing spiking and subthreshold activity using a simple algo-
rithm that identified localized responses (relative to the pre-stimulus
trial-averaged activity), which we call ‘response epochs’. To detect
significant subthreshold response epochs we took the median-filtered
voltage response to a song stimulus and overlaid a sliding 200-sam-
ple (20 ms)-wide analysis window broken into 20 bins. At each
time-step the activity within that window was considered a response
if 85% of the bins had values that exceeded the confidence bounds
set by the trial-averaged pre-stimulus activity (Fig. 1A). We detected
significant spiking response epochs in the same way, except that we
first created a smoothed spiking probability function by converting
the vector of raw spike times to a binary string where ‘1’ indicated
a spike and ‘0’ no spike, convolving with a narrow Gaussian filter,
averaging across trials, and then normalizing to max = 1. To parse
spiking activity we used a 500-sample (50 ms)-wide analysis
window broken into 50 bins and 95% confidence intervals on the
pre-stimulus activity. To maximize the number of independent
responses and minimize the duration of responses, it was necessary
to use slightly different values for the window size and confidence
bounds in the analysis of spiking and subthreshold activity.
Although the statistics of the subthreshold activity vector necessi-
tated a smaller analysis window than for spiking, the minimum

© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 41, 725–733

Auditory intracellular responses to birdsong 727



response duration was smaller than the analysis window for both
spiking and subthreshold responses (62 and 22 ms, respectively)
indicating that the width of the analysis window did not set the
lower bound on distributions of response epoch durations in either
case and that comparisons can be made between the results obtained
in both activity regimes.

Stimulus specificity of subthreshold potential

We recorded the membrane potential throughout the presentation of
each song stimulus across multiple trials (5–10 trials) and used a
median filter to clip spikes. To assess the stimulus specificity of sub-
threshold activity (whether the variance in the membrane potential
within a given portion of song across trials is smaller than the vari-
ance between different portions) we used k-means clustering. Off-
line, we segmented the full song and the corresponding time-locked
subthreshold activity into evenly spaced bins of a given duration
(durations used for the analysis ranged from 0.09 ms to 0.9 s). We
refer to each binned song segment as a ‘stimulus’ for our analysis.
We applied k-means clustering to a random subset of five bins and
sorted all subthreshold activity (which we refer to as ‘response’ for
our analysis) within that set of bins based on similarity in (i) the
time-averaged membrane potential and (ii) the temporal pattern of
membrane voltages. To measure clustering accuracy we calculated
the proportion of correct response–stimulus assignments contained
in the k-means result for every possible bin–cluster permutation and
took the maximum proportion correct as the clustering accuracy. We
iterated this process 100 times and calculated the average clustering
accuracy for each cell–stimulus pair and each segment duration. The
noise floor for the clustering accuracy was calculated using the sub-
threshold activity recorded during silence before song onset.

Fano factor analysis

We adapted routines for analysing mean spike rate and Fano factor
on the extracellular data set from the ‘variance toolbox’ available
from the Churchland lab and used in a recent report (Churchland
et al., 2010). The mean-matched Fano factor was computed for all
stimulus conditions across the set of extracellular sites using a 50-
ms sliding analysis window (in 25-ms steps) to provide a time-vary-
ing estimate of the reliability of the spike rate throughout stimula-
tion. Mean matching equalizes the firing rate distributions across
time to control for the dependence of Fano factor on firing rate.

Statistical analysis

All data were tested for normality using the Kolmogorov–Smirnov
test evaluated at P < 0.05. When appropriate, central tendencies are
reported as median � the 95% confidence interval calculated from
the cumulative distribution function unless otherwise stated. Non-
parametric tests were used when data were not normal.

Results

In this study we distinguish two hypothetical synaptic pooling strate-
gies that could both support hierarchical object selectivity, but that
make distinct predictions about the selectivity of stimulus-specific
subthreshold activity underlying selective spiking in single neurons
in high-level auditory cortex. To examine spiking and subthreshold
responses, we recorded neural activity using whole-cell patch clamp
techniques in 20 single neurons in regions NCM (n = 12) and CM
(n = 8) of anesthetized starlings presented with a range of conspe-
cific songs. These songs have a wide range of natural variation in
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Fig. 1. Examples of spiking and subthreshold activity recorded in whole-cell configuration. (A) Neural recording from an example neuron before, during and
after the presentation of two different 10-s starling song segments sampled from a longer bout. Top, spectrogram of the song. Middle, raster of spike times for
each of 10 trials in which the song sample above was presented. Bottom, isolated subthreshold membrane potential recordings (gray) for the same neuron on
the same 10 trials as above, overlaid with the trial-averaged voltage in black. Colored bars below spiking and subthreshold activity denote facilitatory (red) and
suppressive (blue) response epochs (see Methods); mean trial-averaged pre-stimulus voltage = �62 mV. Dotted lines mark the 98% confidence bounds on the
pre-stimulus range of trial-averaged subthreshold activity. (B,C) Example spiking and subthreshold activity recorded from two different neurons across trials
during which song segments sampled from longer bouts were played. Neural activity and song are displayed as described in (A).
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the distribution of spectro-temporal features across time. This time-
varying acoustic structure is reflected in the high temporal variability
of both the spike rate and the subthreshold activity (Fig. 1).
Although both the spiking and the subthreshold response vary con-
siderably across the duration of the stimulus, as shown in the exam-
ple neurons (Fig. 1), they are nonetheless quite reliable for each
repetition of the same stimulus. In characterizing both the within-
trial variability and the between-trial reliability over multiple time-
scales, we use the term ‘time-averaged’ to refer to the mean activity
averaged over the duration of a single stimulus presentation, and the
term ‘trial-averaged’ to refer to the time-varying activity averaged
across multiple presentations of the same stimulus.

Variability in spiking and subthreshold activity across time

We first quantified the within-trial variability of both the spiking
and the subthreshold activity in individual neurons. For spiking
activity, we isolated epochs during stimulation for which the trial-
averaged spike probability density function exceeded the trial-
averaged pre-stimulus range (see Methods). We sorted these epochs
into facilitating or suppressing responses depending on whether the
time-averaged spike rate increased or decreased relative to the pre-
stimulus period (Figs 1A and 2A; see Methods). The duration of
these spiking responses varied (median 217 ms, CI = 62–1122,
n = 174 facilitatory responses; median 386 ms, CI = 75–2854,
n = 116 suppressive responses) as did their time-averaged spike rate
(median 11.1 spikes/s, CI = 0.4–33.4, n = 174 facilitatory
responses; median 0 spikes/s, CI = 0–0, n = 116 suppressive
responses). On average, the facilitatory responses constituted 8% of
the total stimulus duration (CI = 0–55%; n = 116 stimuli), and sup-
pressive responses constituted 9% of the stimulus duration (CI = 0–
82%; n = 116 stimuli). We note that the low spontaneous spike
rates observed (median 1.0 spike/s, CI = 0.3–3.3, n = 20 neurons)
are common in these regions (Gentner & Margoliash, 2003; Keller &

Hahnloser, 2009; Schneider & Woolley, 2013) and can make sup-
pression of spiking difficult to measure. Thus, the actual number of
suppressive responses may be greater.
For subthreshold activity, we isolated response epochs during

song presentation in which the trial-averaged voltage exceeded the
trial-averaged pre-stimulus range (see Methods). We sorted these
epochs into facilitating or suppressive responses based on whether
the time-averaged voltage within each epoch was depolarized or hy-
perpolarized relative to the pre-stimulus mean (Fig. 1A; see Meth-
ods). These subthreshold responses varied in duration (median
83 ms, CI = 26–449, n = 638 facilitatory responses; median 61 ms,
CI = 22–302, n = 332 suppressive responses) and the time-averaged
polarization (relative to the minimum potential recorded during
silence; median +11 mV, CI = +7 to +19, n = 638 facilitatory
responses; median +2.8 mV, CI = +0.9 to +4.1, n = 332 suppres-
sive responses). In a few cases where we calculated the resting
membrane potential in voltage clamp (data not shown), we found
that the minimum membrane potential recorded during silence
approximated it. Across all neurons in our sample, the facilitatory
subthreshold responses constituted on average 30% of the total stim-
ulus duration (CI = 2–80%; n = 116 stimuli), which was a signifi-
cantly larger proportion than the 8% of the stimulus that contained
facilitatory spiking responses (see above; P < 0.0001 Kolmogorov–
Smirnov test, n = 116 stimuli).
Spiking always co-occurs with subthreshold depolarization (facili-

tatory response), and facilitatory spiking responses are by definition
a subset of facilitatory subthreshold responses. Therefore, to estimate
the amount of facilitatory subthreshold responses that did not co-
occur with spiking responses we take the difference between the
total proportion of the stimulus in which there is facilitatory sub-
threshold response (30%) and subtract the total proportion in which
there is a facilitatory spiking response (8%). Thus, approximately
22% of facilitatory subthreshold responses occur in the absence of
spiking. Based on membrane voltage alone, only a small fraction
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Fig. 2. Stimulus-driven response reliability and specificity. (A) Histograms of mean subthreshold activity level preceding each stimulus (black), the threshold
potential for all spikes recorded from all neurons (gray), and membrane potential values contained within all facilitative (red) and suppressive (blue) response
epochs. (B) The mean trial-averaged, filtered membrane potential (top) and the median trial-to-trial variance relative to pre-stimulus silence (bottom;
hash = median variance before stimulus onset) across all neurons and stimulus blocks. (C) The mean spike rate (top) and the mean-matched Fano factor relative
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a 50-ms sliding window. Data in (B) and (C) are aligned to stimulus onset and offset (stippled lines). (D) Mean accuracy (from k-means clustering) with which
any given segment of the membrane response can be correctly distinguished from any other segment of similar duration, for segments ranging from 0.09 ms to
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duration of analysis time-widow.
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(~17%) of the membrane potential values contained within facilita-
tory subthreshold responses exceeded the minimum spike threshold
(16 mV above the pre-stimulus minimum voltage; Fig. 2A), and
thus had the potential to elicit a spike. The actual distribution of
spikes within this subset of voltages will be lower, as it depends on
the refractory period and the local voltage derivative. Regardless of
the exact spiking distribution, robust spiking responses are much
more selective than the facilitatory subthreshold activity.
Suppressive subthreshold responses were more rare than facilita-

tory subthreshold responses (2% stimulus duration, CI = 0–42%;
n = 116 stimuli), and more rare than suppressive spiking (9% stimu-
lus duration, CI = 0–82%; n = 116 stimuli). Of course, spiking
activity can be suppressed by subthreshold responses with a range
of mean voltages anywhere below spike threshold.

Reproducibility of spiking and subthreshold activity

The two synaptic pooling strategies we address in this study are
distinguished in part by the extent of stimulus control over the
synaptic activity. Across-trial variability in the subthreshold and
spiking activity is a reliable metric of stimulus control that we can
easily measure throughout stimulation. The foregoing analyses
(which showed that both spiking and subthreshold responses span
a range of magnitudes and durations; Figs 1 and 2A) imply that
the activity within response epochs was reproducible across trials.
Reliability is not necessarily constrained to those epochs and may
be measureable on a smaller timescale. We therefore measured reli-
ability of subthreshold and spiking activity throughout stimulation
by calculating the trial-to-trial variance for the subthreshold activity
(single sample resolution) and the Fano factor for spiking (25-ms
resolution) and characterized their temporal dynamics at stimulus
onset and offset.
We observed a significant decrease in the trial-to-trial variance of

the membrane potential during stimulation compared with the pre-
stimulus period (Fig. 2B, bottom; P < 0.0001 Kolmogorov–Smirnov
test; median decrease relative to baseline = 68%, CI = 84–25,
n = 115 cell–stimulus pairs). The time course for the onset of this
drop in the membrane potential variance was very rapid
(Tau = 41 ms), but the relaxation back to the pre-stimulus levels at
the offset of the stimulus was much slower (Tau = 262 ms)
(Fig. 2B, bottom). The suppressed variance relative to baseline per-
sisted throughout song stimulation, but for individual response
epochs the variance depended on the mean as follows. For facilitat-
ing responses (depolarized potentials relative to pre-stimulus mean)
the variance of the membrane potential decreased by 85% relative to
baseline (n = 20 cells). For suppressing responses (hyperpolarized
potentials relative to the pre-stimulus mean) the variance of the
membrane potential decreased by 99.8% relative to baseline (n = 20
cells). We note that this difference is likely to be influenced by sev-
eral factors, including voltage-dependent non-linearities that increase
the spiking probability for depolarized responses, and differences in
the number of synaptic events contributing to each response.
We quantified trial-to-trial variability in the spiking activity

before, during, and after stimulus presentation using the Fano factor
with mean-matching techniques to control for firing rate dependen-
cies (Fig. 2C; Churchland et al., 2010). This analysis is data-inten-
sive and requires more trials than were recorded under whole-cell
configuration and more neurons in order to correct for firing rate
biases. To measure the between-trial reproducibility of spiking activ-
ity, we used extracellular multi-unit activity recorded in NCM to
song stimuli (five adult starlings, 42 multi-unit sites; 336 site–stimu-
lus pairs; Thompson et al., 2013). At stimulus onset there was a

rapid, significant decrease in the Fano factor (Tau = ~119 ms; single
exponential fit), to 70% of baseline (CI = 68–81, P < 0.0001 Kol-
mogorov–Smirnov test, n = 336 stimuli). At stimulus offset, the
Fano factor estimate relaxed back toward the pre-stimulus level, but
with a much slower time course than the onset (Tau = ~412 ms;
Fig. 2C bottom).

Stimulus specificity of subthreshold fluctuations across
multiple timescales

The reproducibility of subthreshold responses suggests that neurons
are under continuous synaptic control throughout the stimulus, rather
than intermittently receiving input corresponding only to features
most relevant to changes in output spike rates. By itself, however,
trial-to-trial reliability does not confer stimulus specificity. Spiking
responses in CM and NCM are both selective (show lifetime sparse-
ness) and stimulus-specific (respond distinctly to different stimuli)
(Jeanne et al., 2011). Having demonstrated that the subthreshold
activity is reliable, we next determined whether it is also stimulus
specific throughout song presentation. Specifically, does the same
portion of a song produce a unique membrane voltage response
(temporal pattern or mean value) that is similar across stimulus repe-
titions?
To answer this question in our whole-cell data set, we applied k-

means analysis to calculate an average clustering accuracy across
response–stimulus pairs (see Methods: ‘Stimulus specificity of sub-
threshold potential’). We then took this accuracy as a measure of
subthreshold stimulus specificity for each cell–stimulus pair
(Fig. 2D). We measured stimulus specificity using a range of stimu-
lus durations, but always included data recorded during the entire
song bout in the analysis. The noise floor for the accuracy estimate
was calculated using the activity recorded during the silence before
the stimulus came on. Both the mean and temporal pattern of mem-
brane potential activity contained enough stimulus specificity to
allow for accurate clustering of response–stimulus pairs (compared
with the ‘noise’ floor) even at single-sample resolution. Beginning
at relatively short timescales (~40 ms), the temporal pattern of sub-
threshold activity could be clustered more accurately than the mean
(Fig. 2D). Thus, even very short, randomly-chosen portions of the
membrane activity carry stimulus-specific information. Increasing
the size of the analysis window substantially improved clustering
accuracy for temporal patterns, but not for the mean, demonstrating
that the time-varying membrane potential carries additional stimulus-
specific information.

Inhibition modulates across-trial reproducibility of spiking in
NCM

We reasoned that local inhibition might also mediate the robustness
of stimulus specificity in the subthreshold activity, which depends
on the reliability of spiking activity in the network from which its
inputs are pooled. To test this idea, we blocked GABA receptors
transiently around extracellular recording sites using iontophoretic
application of gabazine (see Methods).
Local inhibition modulates the magnitude of neuronal spiking in

NCM across song stimuli (Thompson et al., 2013), but its effect on
individuated response epochs was not previously tested. We parsed
spiking response epochs (as in Fig. 1A) using the activity recorded
in the gabazine condition and compared those response epochs with
the corresponding stimulus–response epochs in the intact condition.
Blocking local inhibition induced an increase in spiking activity dur-
ing silence (median = 1.5 spikes/s, CI = 0–15.0, intact condition;
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median = 3.2 spikes/s, CI = 0.2–24.8, gabazine condition; n = 296
stimuli) and a shift toward response epochs with higher spike rates
during auditory stimulation (median = 11.6 spikes/s, CI = 0–71.6,
intact condition; median = 21.5 spikes/s, CI = 1.8–162.2, gabazine
condition; n = 1815 responses) consistent with previously reported
effects (Thompson et al., 2013; Fig. 3A and B).
The extracellularly-recorded spiking activity (from single and

multi-unit sites) can serve as a reasonable proxy for estimating the
reliability of the local synaptic network driving a randomly chosen
cell within that network. To test whether local inhibition might con-
tribute to the reliability of the local network activity, we compared
the Fano factor computed across stimulus trials (see Methods) when
local inhibition was intact and when it was blocked by gabazine.
Indeed, the distribution of stimulus-driven Fano factor estimates
is shifted significantly to larger values when local inhibition is
blocked by gabazine than when inhibition is intact (median = 1.13
intact and 1.27 gabazine; P < 0.0001, Kolmogorov–Smirnov test;
Fig. 3C). Notably, the Fano factor distribution across sites during
the pre-stimulus period was not significantly altered by gabazine
(median = 1.52 intact and 1.53 gabazine; P = 0.7, Kolmogorov–
Smirnov test). Likewise, the time course of the change in vari-
ance at stimulus onset and offset appeared to be unaffected by
blocking local inhibition with the application of gabazine
(Tau_onset = 119 ms and Tau_offset = 412 ms with inhibition
intact; Tau_onset = 115 ms and Tau_offset = 358 ms with inhibi-
tion blocked; Fig. 3A, bottom). Together, these results show that
local inhibition mediates a stimulus-driven increase in reproducibil-
ity of spiking activity.

Discussion

We recorded the spiking and subthreshold activity of neurons in the
high-level auditory regions CM and NCM, in the starling forebrain,
in response to spectro-temporally diverse natural songs. We find that
song stimuli drive time-varying subthreshold membrane voltage
responses that are reliable across trials and stimulus-specific, but
non-selective. These results are inconsistent with a model in which
neurons with highly selective spiking responses pool over sets of
inputs that only drive synaptic activity in service of the selective
spiking response. This indicates that, at lease these and possibly
other high-level sensory neurons are sampling from a much more
rich and diverse stimulus space than is evinced by their output spik-
ing. When local inhibition is blocked, spiking variability across tri-
als increases in NCM, suggesting that inhibition plays a key role in
governing the stimulus specificity of the time-varying membrane
voltage activity generated in a distributed pooling regime.
Understanding how stimulus encoding supports the adaptive inter-

action between animals and their environment requires studying
how natural stimuli are represented in the spiking activity of individ-
ual neurons and their populations. The relationship between spiking
activity in single neurons and a sensory stimulus depends on both
the properties of a potential set of inputs and the pooling operation
across those inputs in the post-synaptic cell. In general, the com-
plexity of stimulus selectivity increases along the sensory processing
pathway with sparse-firing neurons in ‘higher’ regions selectively
spiking in response to progressively more complex features (Sen
et al., 2001; Hsu et al., 2004; Meliza et al., 2010; Marshel et al.,
2011; DiCarlo et al., 2012). This organization implies a functional
hierarchy and presumably confers benefits for the classification and
recognition of complex signals (Babadi & Sompolinsky, 2014). To
explain higher-order feature selectivity, classic models first devel-
oped for primary visual cortex (Hubel & Wiesel, 1962; Movshon
et al., 1978) relied on the combination of inputs selective for sim-
pler component features. This kind of feed-forward pooling forms
the basis for more contemporary models of object selectivity (Rie-
senhuber & Poggio, 1999; Rauschecker & Scott, 2009; Lien &
Scanziani, 2013), where selective convergence of inputs at each
level of a hierarchical network gives rise to narrowed stimulus tun-
ing and more complex receptive field structure. Functionally, these
models capture the transformation from dense low-level feature rep-
resentations to sparse encoding of high-dimensional objects, but the
synaptic and network mechanisms underlying this (or other hierar-
chical models) is not well understood – especially in high-order neu-
rons driven by continuous stimuli comprising diverse sets of
features over long periods of time.
Natural signals are ongoing, temporally variable and diverse. We

observe reliable spiking activity in response to natural song in
regions CM and NCM of the starling cortex, demonstrating that the
neurons are clearly auditory. In concert with the temporal variability
of the signal, however, spiking is not evenly distributed throughout
stimulation. In our own data, the distribution of the stimulus-evoked
spike rates averaged over an entire song stimulus is not much differ-
ent from the mean spontaneous spike rate (stimulus evoked: 1.0
spikes/s, CI = 0.4–5.9 spikes/s; spontaneous: 1.0 spikes/s, CI = 0.3–
3.3 spikes/s), demonstrating that the mean spike rate over the song
is indeed a poor measure of the cell’s temporally sparse response
(Fig. 1). This raises the interesting question of what inputs a cell
might receive during periods of the stimulus, when there is no stim-
ulus-specific spiking response. Drawing on the majority of physiol-
ogy experiments, in which the stimulus has been abstracted from the
world and arbitrarily tailored to the response, one might reason that
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Fig. 3. Effects of gabazine. (A) The spike rate (top) and the mean-matched
Fano factor (bottom) during the intact condition (black) and during gabazine
iontophoresis (red), computed for all stimulus conditions across the set of
extracellular sites using a 50-ms sliding analysis window (in 25-ms steps).
For visualization of the relative onset and offset time course, the Fano factor
trace in each condition is aligned to the median stimulus-evoked Fano factor
and normalized to the maximum Fano factor before stimulus onset. (B)
Cumulative distribution functions of the spike rate per response epoch (colors
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A).
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the inputs revert to a spontaneous state. Indeed, statements in the lit-
erature that explicitly or implicitly assume sparsely spiking neurons
are not carrying out any computations for the majority of the time
are not hard to find (Abeles et al., 1990; Graham & Field, 2007a).
But these assumptions have not been tested.
Our results address two potential synaptic pooling regimes,

referred to as ‘sparse’ and ‘distributed’ pooling, that could underlie
sparse, object-selective spiking to natural stimuli. Both pooling
regimes can permit selective spiking output, but are distinguished by
the selectivity and stimulus-specificity of subthreshold activity
throughout long bouts of ongoing natural stimuli. Under sparse
pooling, neurons pool inputs that are biased towards the stimulus
features that ultimately drive changes in spike rates. For our analy-
ses, this predicts that stimulus-specific activity should be largely
restricted, on average, to the response epochs that inform spiking.
Conversely, the subthreshold activity that is uninformative of stimu-
lus-specific spiking responses – namely the subthreshold activity not
designated as response epochs – should not be stimulus-specific.
Our results do not support these predictions. Instead, we find that
subthreshold activity is remarkably reliable and stimulus-specific
throughout every song presented, regardless of whether there is a
stimulus-driven change in the probability of spiking (Figs 1 and 2).
This nearly continuous, stimulus-specific control over the subthresh-
old response rules out a sparse pooling regime.
Instead, the pattern of results favors a distributed pooling regime,

in which neurons with selective spiking responses pool synaptic
inputs that collectively produce a non-selective, but stimulus-spe-
cific, subthreshold response. Importantly, our results cannot address
whether the individual pre-synaptic neurons themselves are selec-
tively or non-selectively tuned, but two different scenarios seem
most plausible to account for the observed ongoing stimulus-driven
reliability and temporal specificity. One possibility is that individual
CM and NCM neurons pool inputs from neurons tuned to low-
dimensional features that have a relatively high probability of occur-
ring at many points throughout song. These inputs could come from
Field L, where some neurons are well-described as frequency-tuned.
Their spiking responses are correspondingly non-selective through-
out vocalizations and could provide continuous drive to a post-syn-
aptic neuron because power in a given frequency channel is
distributed broadly throughout the song. This scenario implies that
the populations over which a given neuron is pooling have low pop-
ulation sparseness. Although sparseness appears to be a common
feature of sensory encoding (Vinje & Gallant, 2000, 2002; Olshau-
sen & Field, 2004; Graham & Field, 2007b; Hromadka et al.,
2008), it may not be the only representational scheme in place (Sak-
ata & Harris, 2009; Tolhurst et al., 2009). A second possibility is
that individual NCM and CM neurons pool inputs from neurons
tuned to high-dimensional features that occur with relatively low
probability throughout the song. In this case inputs might come
from other neurons within CM, NCM and other auditory regions
that exhibit high population sparseness and whose neurons have
high lifetime sparseness. Dense recurrence among (or within) these
regions could allow for pooling over much larger numbers of these
selective inputs and provide continuous drive to a post-synaptic neu-
ron. In both scenarios, sparse post-synaptic spiking could emerge
through the covariance of a specific set of inputs regardless of their
tuning. Differentiating between these two possibilities requires a bet-
ter understanding of the diversity of features to which the inputs are
tuned and the combinatorial operations that govern their integration.
In either case, our data are consistent with a model in which sparse
spiking responses emerge through distributed pooling, which places
demands on post-synaptic computational mechanisms to generate

sparse spiking responses. These mechanisms, and their relationship
to non-linearities imposed by the spiking threshold, will be impor-
tant to investigate in future work.
Maintaining synaptic inputs for features that do not co-vary

directly with selective spiking output seems somewhat counterintui-
tive, but it may confer computational advantages for behavior. We
know that responses to elements of natural auditory signals are
highly dependent on the information conveyed about behavior by
particular acoustic material, so the stimulus–response relationship is
heavily modulated by behavioral experience (Blake et al., 2002,
2006; Gentner & Margoliash, 2003; Thompson et al., 2010, 2013;
Jeanne et al., 2011, 2013; Meliza & Margoliash, 2012). Distributed
pooling may confer individual neurons with flexible encoding across
a wide diversity of stimulus features, allowing behavioral feedback
to shape the pluripotency of the same inputs through synaptic plas-
ticity, adaptation or other mechanisms (Kozlov & Gentner, 2014).
Thus, a given neuron may ‘represent’ multiple objects based on the
dynamic functional organization of the system (Kozlov et al.,
2013).
The subthreshold activity of all neurons in our sample is consis-

tent with a distributed synaptic pooling architecture. This, in turn,
implies that most (if not all) the neurons in these regions are highly
interconnected, potentially causing correlations that could lead to
deleterious effects on the encoding/decoding of spiking responses
across cells (Cohen & Maunsell, 2009; Cohen & Kohn, 2011). The-
oretical work has shown, however, that recurrent connectivity in
cortical networks can actually decorrelate the activity patterns of
neurons with shared presynaptic input (Helias et al., 2014), specifi-
cally though inhibitory feedback (Tetzlaff et al., 2012; Bernacchia
& Wang, 2013). Correlated firing can also modulate the gain of
postsynaptic cells (Salinas & Sejnowski, 2000). We find a major
role for inhibition in shaping both the trial-to-trial reproducibility of
the post-synaptic response to ongoing natural stimuli, and the mag-
nitude of spike rates – effects that inhibition could manifest by
altering the correlation structure of the network. The gain of
responses could also be modulated directly by feed-forward inhibi-
tion (Mejias et al., 2014). Input–output mappings even in single
neurons are not static over time or behavioral conditions (Kozlov &
Gentner, 2014), and our results demonstrate that inhibition is poised
to provide flexible control over these response characteristics under
natural conditions. To understand how inhibition is modulating the
sensitivity of the input–output function in neurons of the Starling
auditory cortex it will be useful to develop more precise ways
to isolate and manipulate different sources of inhibition in the
network.
The results of the current study expand our understanding of the

synaptic and network mechanisms that underlie hierarchical selective
representations of complex natural communication signals in the
auditory system. The implications of specific types of synaptic con-
vergence on the computations performed by object-selective neurons
in sensory cortex have not been well established and they constrain
models for the sparse, selective encoding of natural stimuli.
Demands on synaptic plasticity to tune the output of individual neu-
rons from broadly selective synaptic input could provide a computa-
tional advantage for increasing the amount of information a sensory
signal conveys about behavior across different contexts, improving
both the flexibility and the efficiency of stimulus encoding. Network
organization and synaptic integration both shape the input–output
relationship between the stimulus and the neural response in single
cells. Knowing more about these operations in the context of natu-
rally occurring stimuli is a critical step to improving on current
models of how stimulus selectivity arises in neural networks.
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